Weakly-supervised Learning of Mid-level Features for Pedestrian Attribute Recognition and Localization
نویسندگان
چکیده
State-of-the-art methods treat pedestrian attribute recognition as a multi-label image classification problem. The location information of person attributes is usually eliminated or simply encoded in the rigid splitting of whole body in previous work. In this paper, we formulate the task in a weakly-supervised attribute localization framework. Based on GoogLeNet, firstly, a set of mid-level attribute features are discovered by novelly designed detection layers, where a max-pooling based weakly-supervised object detection technique is used to train these layers with only imagelevel labels without the need of bounding box annotations of pedestrian attributes. Secondly, attribute labels are predicted by regression of the detection response magnitudes. Finally, the locations and rough shapes of pedestrian attributes can be inferred by performing clustering on a fusion of activation maps of the detection layers, where the fusion weights are estimated as the correlation strengths between each attribute and its relevant mid-level features. Extensive experiments are performed on the two currently largest pedestrian attribute datasets, i.e. the PETA dataset and the RAP dataset. Results show that the proposed method has achieved competitive performance on attribute recognition, compared to other state-of-the-art methods. Moreover, the results of attribute localization are visualized to understand the characteristics of the proposed method.
منابع مشابه
Self-Transfer Learning for Fully Weakly Supervised Object Localization
Recent advances of deep learning have achieved remarkable performances in various challenging computer vision tasks. Especially in object localization, deep convolutional neural networks outperform traditional approaches based on extraction of data/task-driven features instead of handcrafted features. Although location information of regionof-interests (ROIs) gives good prior for object localiz...
متن کاملRecognition of Visual Events using Spatio-Temporal Information of the Video Signal
Recognition of visual events as a video analysis task has become popular in machine learning community. While the traditional approaches for detection of video events have been used for a long time, the recently evolved deep learning based methods have revolutionized this area. They have enabled event recognition systems to achieve detection rates which were not reachable by traditional approac...
متن کاملImage Segmentation Algorithms Overview
The technology of image segmentation is widely used in medical image processing, face recognition pedestrian detection, etc. The current image segmentation techniques include region-based segmentation, edge detection segmentation, segmentation based on clustering, segmentation based on weakly-supervised learning in CNN, etc. This paper analyzes and summarizes these algorithms of image segmentat...
متن کاملMulti-Evidence Filtering and Fusion for Multi-Label Classification, Object Detection and Semantic Segmentation Based on Weakly Supervised Learning
Supervised object detection and semantic segmentation require object or even pixel level annotations. When there exist image level labels only, it is challenging for weakly supervised algorithms to achieve accurate predictions. The accuracy achieved by top weakly supervised algorithms is still significantly lower than their fully supervised counterparts. In this paper, we propose a novel weakly...
متن کاملEfficient Labelling of Pedestrian Supervisions
Object detection is a fundamental goal to achieve intelligent visual perception by computers due to the fact that objects are the basic building blocks to achieve higher level image understanding. Among the numerous categories of objects in the real-world, pedestrians are among the most important due to several potential benefits brought about by successful pedestrian detection. Often, pedestri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1611.05603 شماره
صفحات -
تاریخ انتشار 2016